Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Poly[[tetraaqua $\left(\mu_{7}-\right.$ pyridine-2,3,5,6tetracarboxylato)dicadmium(II)] monohydrate]

Sitang Yan, Lianxu Shi and Chuande Wu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
Correspondence e-mail: chdewu@gmail.com
Received 7 February 2010
Accepted 2 March 2010
Online 9 March 2010
The title compound, $\left\{\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{9} \mathrm{HNO}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of two crystallographically independent $\mathrm{Cd}^{\mathrm{II}}$ cations, one tetrabasic pyridine-2,3,5,6-tetracarboxylate (pdtc) anion, four coordinated water molecules and one solvent water molecule. The $\mathrm{Cd}^{\mathrm{II}}$ cations have distorted square-antiprismatic (one pyridine N , six carboxylate O and one water O atom) and octahedral (three carboxylate O and three water O atoms) coordination environments. Each pdtc ligand employs its pyridine and carboxylate groups to chelate and bridge seven $\mathrm{Cd}^{\mathrm{II}}$ cations. The square-antiprismatic coordinated $\mathrm{Cd}^{\mathrm{II}}$ cations are linked by pdtc ligands into a lamellar framework structure, while the octahedral coordinated $\mathrm{Cd}^{\mathrm{II}}$ cations are bridged by the μ_{2}-carboxylate O atoms and the pdtc ligands into a chain network that further joins neighbouring lamellae into a three-dimensional porous network. The cavities are filled with solvent water molecules that are linked to the host through complex hydrogen bonding.

Comment

In the past few years, crystal engineering of porous metalorganic coordination networks has attracted much attention because of their interesting structural patterns, with both aesthetic appeal and special functionalities for potential applications (Czaja et al., 2009; Lee et al., 2009; Li et al., 2009; Ma et al., 2009; Murray et al., 2009; Tranchemontagne et al., 2009; Wang \& Cohen, 2009). It has been shown that judicious choice of organic bridging ligands and metal nodes is the key step towards the construction of interesting topological frameworks.

Pyridine-2,3,5,6-tetracarboxylic acid $\left(\mathrm{H}_{4} \mathrm{pdtc}\right)$, which contains one pyridine and four carboxylate potential donor groups, should be an effective ligand for coordinating to transition metal cations to generate some interesting structural networks (Babu \& Nangia, 2006). However, only two pdtc-ligand-coordinated compounds have been reported to date, a tetranuclear zinc(II) compound bridged by two pdtc
anions, and a mononuclear nickel(II) compound chelated by pdtc (Yang et al., 2008). In the former case, because the additional coordination sites of the $\mathrm{Zn}^{\mathrm{II}}$ cations are blocked by four chelating 1,10-phenanthroline molecules, the tetranuclear Zn unit cannot be further bridged by additional pdtc ligands to form a polymeric framework. In the latter case, as three water coordination sites of the $\mathrm{Ni}^{\mathrm{II}}$ cation are not replaced by additional pdtc ligands, the pdtc ligand only chelates one $\mathrm{Ni}^{\mathrm{II}}$ cation to form a mononuclear nickel(II) compound.

Because of the relatively large ionic radius of the $\mathrm{Cd}^{\mathrm{II}}$ cation, its coordination numbers in O-donor complexes typically range from 6 to 8 , which suggests that cadmium compounds should form some interesting three-dimensional frameworks (Wang et al., 2007). In fact, there are several examples of three-dimensional frameworks of $\mathrm{Cd}^{\mathrm{II}}$ cations bridged by pyridine carboxylates, such as pyridine-3,4dicarboxylate (Xia et al., 2004), pyridine-2,4-dicarboxylate (Bai et al., 2008), pyridine-2,3-dicarboxylate (Zhang et al., 2005; Han et al., 2006) and pyridine-2,4,6-tricarboxylate (Wang et al., 2007; Zou et al., 2008). Attracted by the interesting structural motifs of these pyridine carboxylate-bridged cadmium compounds, we anticipated that pdtc would be an effective bridging ligand to generate a novel structural network. We report here the first three-dimensional porous polymeric framework compound based on the pdtc ligand, viz. the title compound, $\left[\mathrm{Cd}_{2}(\mathrm{pdtc})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (I).

(I)

Compound (I) crystallizes in the triclinic $P \overline{1}$ space group with two $\mathrm{Cd}^{\mathrm{II}}$ cations, one fully deprotonated pdtc anion, four aqua ligands and one solvent water molecule in the asymmetric unit (Fig. 1). Each pdtc ligand employs its pyridine group and carboxylate groups to chelate and bridge seven $\mathrm{Cd}^{\mathrm{II}}$ cations. Atom Cd1 is chelated by the pyridine group and two neighbouring carboxylate O atoms from the first pdtc ligand, two O atoms of a carboxylate group from a second pdtc ligand, one carboxylate O atom from a third pdtc ligand, a $\mu_{2^{-}}$ carboxylate O atom from a fourth pdtc ligand and one aqua ligand, in an octacoordinated distorted square-antiprismatic coordination environment (Table 1).

The pdtc ligands link the Cd1 cations into an interesting lamellar framework structure in the $a b$ plane (Fig. 2). Atom Cd 2 has a hexacoordinated octahedral geometry, chelated by two O atoms of one pdtc carboxylate group, one μ_{2}-carboxylate O atom of another pdtc ligand and three aqua ligands (Table 1). There is one additional interaction, $\mathrm{Cd} 2-\mathrm{O}^{\mathrm{v}}=$ 2.676 (4) \AA [symmetry code: (v) $x, y, z-1$], but this is outside

Figure 1
A perspective view of the locally expanded asymmetric unit for (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $2-x, 1-y, 2-z$; (ii) $1-x, 1-y$, $2-z$; (iii) $x, y-1, z$; (iv) $x, y, z-1$; (v) $2-x, 1-y, 1-z$.]

Figure 2
A view of the lamellar framework of Cd 1 ions linked by pdtc ligands.
the typical range of 2.1-2.4 \AA for $\mathrm{Cd}-\mathrm{O}$ coordination. The μ_{2}-carboxylate O atom bridges two Cd 2 sites into a binuclear unit, which is further doubly bridged by pdtc ligands into a chain network along the c direction (Fig. 3). As the alternating pdtc ligands along c are attributed to different layers of pdtc linking up Cd 1 sites, the Cd 2 sites serve to join neighbouring lamellar Cd1-pdtc frameworks into a three-dimensional porous network structure (Fig. 4). The cavities are filled with solvent water molecules that interact with the host framework through hydrogen bonding. The hydrogen-bond distances between solvent water molecules and carboxylate O atoms range from 2.728 (6) to 2.730 (6) \AA, and those between solvent water molecules and aqua ligands from 2.707 (6) to 2.765 (6) A. Finally, there are also extensive hydrogen bonds between aqua ligands and carboxylate O atoms [2.686 (6)2.975 (6) A $]$ and between aqua ligands themselves [2.870 (6)2.946 (6) Å].

The framework structure of (I) is quite different from previously reported three-dimensional $\mathrm{Cd}^{\mathrm{II}}$ compounds

Figure 3
A view of the linear framework of Cd 2 ions linked by pdtc ligands.

The packing of (I), viewed down the a axis, showing the hydrogen bonds involving the solvent water molecules as dashed lines. For clarity, H atoms have been omitted.
bridged by pyridine dicarboxylates. For example, pyridine-3,4dicarboxylate acts a tetradentate ligand to link four octahedrally distorted $\mathrm{Cd}^{\mathrm{II}}$ cations into a three-dimensional architecture with small square channels without guest molecules (Xia et al., 2004). The pyridine-2,4-dicarboxylate ligand acts as a pentadentate ligand to link five octahedral $\mathrm{Cd}^{\mathrm{II}}$ cations into a three-dimensional framework with large channels occupied by the pyridine groups of the ligands (Bai et al., 2008), while pyridine-2,3-dicarboxylate, adopting two different coordination modes, bridges $\mathrm{Cd}^{\mathrm{II}}$ tetramers into a three-dimensional network without guest molecules (Han et al., 2006). The three-dimensional framework of pyridine-2,4,6-tricarboxylate-bridged $\mathrm{Cd}^{\mathrm{II}}$ cations is similar to (I) in that there are two different types of $\mathrm{Cd}^{\mathrm{II}}$ cations in distorted octahedral and pentagonal-bipyramidal coordination environments. Pyridine-2,4,6-tricarboxylate bridges the pentag-onal-bipyramidal coordinated $\mathrm{Cd}^{\mathrm{II}}$ cations into a twodimensional layer structure, which is further extended into a three-dimensional network linked by the octahedrally coordinated $\mathrm{Cd}^{\mathrm{II}}$ cations and carboxyl groups without guest molecules within the cavities thus formed (Wang et al., 2007).

Thermogravimetric analysis (TGA) of (I) indicates that a weight loss of 15.7% occurs between 303 and 433 K , corresponding to the loss of solvent water molecules and aqua ligands (expected 15.9%), without a distinct plateau in the curve. There is almost no further weight loss until 683 K , above which (I) began to lose the coordinated pdtc ligand and to decompose. After a sample of (I) was ground and heated at 368 K for 2 h , a powder X-ray diffraction (PXRD) profile of the resultant powder showed no sharp peaks in the PXRD pattern, and this material cannot be rehydrated and reverted to the original compound after being immersed in water, as confirmed by the PXRD pattern. These results indicate that both the solvent and ligand water molecules play important roles in the formation and stability of (I).

Experimental

Heating a mixture of $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(4.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{H}_{4} \mathrm{pdtc}$ $(2.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ in water $(4.0 \mathrm{ml})$ at 368 K for 1 d afforded colourless crystals of (I), which were filtered off, washed with water, ethanol and diethyl ether, and dried at room temperature (yield 78%, based on H_{4} pdtc). IR (KBr pellet, $v, \mathrm{~cm}^{-1}$): 1616 (s), $1560(s)$, 1453 (m), 1371 (s), 1334 (m), 1269 (w), 1159 (m), 837 (w).

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{9} \mathrm{HNO}_{8}\right)\right.$
$M_{r}=565.99$

$$
\gamma=67.269(4)^{\circ}
$$

$M_{r}=565.99$
Triclinic, $P \overline{1}$
$a=8.3989$ (5) Å
$b=8.5350$ (3) \AA
$c=11.4883(5) \AA$
$\alpha=89.325(4)^{\circ}$
$\beta=69.014(5)^{\circ}$

Data collection

Oxford Xcalibur Gemini Ultra diffractometer with an Atlas detector
Absorption correction: analytical (CrysAlis Pro; Oxford
Diffraction, 2010)
$T_{\text {min }}=0.645, T_{\text {max }}=0.756$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$	226 parameters
$w R\left(F^{2}\right)=0.044$	H-atom parameters constrained
$S=1.07$	$\Delta \rho_{\max }=0.68 \mathrm{e}^{-3}$
2650 reflections	$\Delta \rho_{\min }=-0.87 \mathrm{e}^{-3}$

H atoms on C atoms were positioned geometrically and included in the structure-factor calculations as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$. The H atoms of the water molecules were clearly visible in difference maps, and these were placed in the difference-map positions, then their positions were idealized and constrained to ride on their parent O atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA$. All H atoms were assigned fixed isotropic displacement parameters in the subsequent refinement, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: CrysAlis Pro (Oxford Diffraction, 2010); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 5^{\text {i }}$	2.345 (4)	$\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$	2.511 (4)
Cd1-N1	2.352 (5)	$\mathrm{Cd} 2-\mathrm{O}^{\text {iv }}$	2.238 (4)
$\mathrm{Cd} 1-\mathrm{O} 4^{\text {ii }}$	2.373 (4)	$\mathrm{Cd} 2-\mathrm{O} 3^{\text {v }}$	2.304 (4)
Cd1-O1	2.423 (4)	Cd2-O11	2.325 (4)
$\mathrm{Cd} 1-\mathrm{O}^{\text {iii }}$	2.446 (4)	Cd2-O12	2.325 (4)
Cd1-O9	2.447 (4)	Cd2-O10	2.344 (4)
Cd1-O8	2.460 (4)	Cd2-O3	2.389 (4)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	81.77 (14)	$\mathrm{O} 6^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$	52.58 (12)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1$	68.07 (14)	$\mathrm{O} 9-\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$	76.33 (13)
$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 6^{\mathrm{iii}}$	72.44 (13)	$\mathrm{O} 7^{\text {iv }}-\mathrm{Cd} 2-\mathrm{O} 11$	84.78 (15)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}^{\text {iii }}$	78.83 (13)	$\mathrm{O} 3^{v}-\mathrm{Cd} 2-\mathrm{O} 12$	85.24 (14)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 8$	67.71 (14)	$\mathrm{O} 7^{\text {iv }}-\mathrm{Cd} 2-\mathrm{O} 10$	82.08 (15)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 8$	76.64 (13)	$\mathrm{O}^{\mathrm{v}}-\mathrm{Cd} 2-\mathrm{O} 3$	77.03 (14)
O9-Cd1-O8	71.03 (13)	$\mathrm{O} 12-\mathrm{Cd} 2-\mathrm{O} 3$	77.11 (14)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$	67.54 (15)	$\mathrm{O} 10-\mathrm{Cd} 2-\mathrm{O} 3$	77.03 (14)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}{ }^{\text {iii }}$	71.84 (13)		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 12^{\text {vi }}$	0.82	2.17	2.946 (6)	159
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O}^{\text {vii }}$	0.82	2.06	2.872 (5)	170
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 9^{\text {viii }}$	0.82	2.11	2.912 (6)	164
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O} 13$	0.82	1.91	2.707 (6)	164
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{O} 13^{\text {ix }}$	0.82	2.00	2.765 (6)	154
$\mathrm{O} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{O} 4$	0.82	1.94	2.686 (6)	151
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 10^{v}$	0.82	2.14	2.892 (6)	152
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2$	0.82	2.48	2.975 (6)	120
$\mathrm{O} 12-\mathrm{H} 12 B \cdots \mathrm{O} 11^{\mathrm{x}}$	0.82	2.12	2.870 (6)	152
$\mathrm{O} 13-\mathrm{H} 13 A \cdots \mathrm{O}^{\text {xi }}$	0.82	1.91	2.728 (6)	174
$\mathrm{O} 13-\mathrm{H} 13 B \cdots \mathrm{O} 2^{\text {xii }}$	0.82	1.93	2.730 (6)	168

Symmetry codes: (v) $-x+2,-y+1,-z+1$; (vi) $x, y, z+1$; (vii) $-x+2,-y,-z+2$; (viii) $x, y+1, z-1$; (ix) $-x+1,-y+2,-z+1$; (x) $-x+1,-y+1,-z+1$; (xi) $-x+1,-y+2,-z+2$; (xii) $x, y+1, z$.
graphics: SHELXL97; software used to prepare material for publication: PLATON (Spek, 2009).

The authors are grateful for financial support from the Zhejiang Provincial Natural Science Foundation of China (grant No. R406209), the Chinese Universities Scientific Fund and the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. 20090101110017).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3239). Services for accessing these data are described at the back of the journal.

References

Babu, N. J. \& Nangia, A. (2006). Cryst. Growth Des. 6, 1753-1756.
Bai, Z.-S., Xu, J., Su, Z. \& Sun, W.-Y. (2008). Inorg. Chem. Commun. 11, 12271230.

Czaja, A. U., Trukhan, N. \& Müller, U. (2009). Chem. Soc. Rev. 38, 1284-1293.
Han, Z.-B., Ma, Y., Sun, Z.-G. \& You, W.-S. (2006). Inorg. Chem. Commun. 9, 844-847.
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. \& Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450-1459.

Li, J.-R., Kuppler, R. J. \& Zhou, H.-C. (2009). Chem. Soc. Rev. 38, 1477-1504.

metal-organic compounds

Ma, L., Abney, C. \& Lin, W. (2009). Chem. Soc. Rev. 38, 1248-1256.
Murray, L. J., Dinca, M. \& Long, J. R. (2009). Chem. Soc. Rev. 38, 1294 1314.

Oxford Diffraction (2010). CrysAlis Pro. Version 1.171.33.56. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. \& Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257-1283.

Wang, Z. \& Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315-1329.

Wang, H.-S., Shi, W., Xia, J., Song, H.-B., Wang, H.-G. \& Cheng, P. (2007). Inorg. Chem. Commun. 10, 856-859.
Xia, S.-Q., Hu, S.-M., Dai, J.-C., Wu, X.-T., Zhang, J.-J., Fu, Z.-Y. \& Du, W.-X. (2004). Inorg. Chem. Commun. 7, 51-53.

Yang, A.-H., Zhang, H., Gao, H.-L., Zhang, W.-Q., He, L. \& Cui, J.-Z. (2008). Cryst. Growth Des. 8, 3354-3359.
Zhang, H.-T., Li, Y.-Z., Wang, H.-Q., Nfora, E. N. \& You, X.-Z. (2005). CrystEngComm, 7, 578-585.
Zou, R.-Q., Zhong, R.-Q., Du, M., Pandey, D. S. \& Xu, Q. (2008). Cryst. Growth Des. 8, 452-459.

